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Abstract 
The paper deals with the problems of correction of certain types of aberrations of focusing electronic lenses 

and electro-optical assemblies using additional elements containing a sextupole component of the electrostatic 
potential distribution. Aberration correctors make it possible to significantly improve the technical characteristics 
of a wide class of analytical instruments and technological installations. 
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In various devices and devices of electronic and 

ionic optics, significant aberrations of elements and as-
semblies of these devices often hinder the achievement 
of the required values of technical and operational char-
acteristics. To eliminate such obstacles to the improve-
ment of particle-beam systems, aberration correctors 
are used, which make it possible to significantly im-
prove the technical characteristics of a wide class of an-
alytical instruments and technological installations. 
Many works [1-14] are devoted to the problems of the-
oretical and applied research of the properties of elec-
tronic lenses and the search for possibilities for correct-
ing aberrations. At present, the quadrupole components 
of focusing fields are most often used as aberration cor-
rectors. Sextupole correctors are also used, but they are 
used rather limitedly and their properties are poorly 
studied. 

In this work, the possibility of correcting the aber-
rations of electronic lenses using the sextupole compo-
nents of the fields is studied in sufficient detail. The 
equations for the trajectories of charged particles are 
derived and formulas are determined for the numerical 
calculation of the main parameters of a lens containing 
the axisymmetric and sextupole components of the 
fields. 

Let us introduce a Cartesian coordinate system x, 
y and z, the z axis of which coincides with the main op-
tical axis y of the lens under study. 

The motion of charged particles in the studied 
electron lens is described by the following system of 
equations: 
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where, e and m are the charge and mass of the par-
ticle, φ = φ (x, y , z ) is the distribution of the electro-
static potential, the points denote differentiation in 
time,   is the spread of the energy of charged particles 
in the beam. 

Consider a variant of a cathode lens containing ax-
isymmetric and sextupole components of the focusing 
potential distribution. 

For a cathode lens, the initial conditions for equa-
tions (1), (2) have the form: 
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where   is the angle between the direction of 
emission of the particle emitted by the cathode and the 
main optical axis, α is the angle between the projection 
of the vector of the initial velocity of the particle emit-
ted by the cathode onto the xy plane and the x axis; the 
subscript “k” denotes the value of the quantity at t = 0, 
i.e. at the cathode. 

The distribution of the electrostatic potential near 
the main optical axis of the lens can be represented as 
the following series: 
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where    zz ,0,0 ; 
3 3, f  are functions 

that characterize the sixth field components of the field, 
the dashes denote differentiation along the z coordinate. 

 
Let us assume that the center of the cathode coin-

cides with the origin of coordinates, the potential of the 
cathode is taken to be zero, i.e. 

( , , ) 0k k k kx y z   . (8)  

Substituting the value  zyx ,,  of the function 

from (7) into the system of equations (1), (2), we obtain 
the equations of motion of a charged particle in the field 
under study. 

Let us consider the motion of an arbitrary particle 
in the beam relative to the motion of the reference par-
ticle, calling the motion of this particle the reference 
motion. Let us take as a reference particle moving along 
the z axis and having zero initial energy (i.e., ε = 0). In 
this case, the support motion is described by the equa-
tion 
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where the subscript "on" denotes that the value be-
longs to the reference motion. 

From (9) we have 
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The z coordinate of an arbitrary particle can be ex-
pressed in terms of the axial coordinate of the reference 
particle z op as follows  

)( onzon zDzz   (11) 

Here the function Dz(zоп) describes the total longi-
tudinal aberration of the lens under study. 

Substituting (10) and (11) into the equations of 
motion, we obtain 
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In equations (12) - (14) and further, until it is spe-

cifically stated, the arguments of all functions are ОПz
, and the primes denote differentiation with respect to 

ОПz . When deriving the last equations, we used ex-

pansions of the form 
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Equations (12) - (14) are equations of motion of 
charged particles in parametric form. The coordinate of 
the reference particle is taken as a parameter. Note that 
on the right-hand sides of the equations of motion, 
terms are retained not higher than the third order of 
smallness. 

To derive the equations of trajectories in paramet-
ric form, it is necessary to solve the system of equations 
(12) - (14). Equations (12) and (13) are linear nonho-
mogeneous differential equations of the second order, 
and equation (14) is a linear nonhomogeneous equation 
of the first order. 

The system of equations (12) - (14) can be solved 
by the method of successive approximations. In the first 
approximation, we find solutions to linear homogene-
ous equations, therefore, we take equal to zero the right-
hand sides of these equations, then they will take the 
form: 
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Index "1" means that the values of the quantities 
are determined in the first approximation. 

Taking into account condition (6), the solution to 
equation (18) will be 

z

K

Z
Ф

D 
'1

2
. (19)  

From (19) it is seen that 1zD  is a quantity of the 

first order of smallness. General solutions of linear ho-
mogeneous differential equations of the second order 
(16) and (17) have the form: 
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where аx, bx, аy and by are arbitrary constants de-
termined from the initial conditions; Ux, Vx, Uy, and Vy 
are particular linearly independent solutions of equa-
tions (16) and (17). 

Using the initial conditions, one can see that the 
particular linearly independent solutions Ux, Vx, Uy and 
Vy are related to each other by the following expression 
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General solutions of the (12) - (14) equations in 
the form: 
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The numbers 1, 2 and 3 in the indices indicate the 
order of smallness of the corresponding values. 

In equations (22) and (23), respectively, Dx2, Dxз, 
Dу2 and Dуз are vertical aberrations of the second and 

third orders, 
1zD  and 

2zD  are longitudinal aberrations 

of the first and second orders of smallness.  
Since, equation (16) and (17) are of a singular 

point at kz z , which are the poles of the first kind, 

solutions Vx and Vy can be represented as: 
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Wx and Wy are analytical functions that satisfy the 
equations:  
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Equations (16), (17), (25), (26) are solved under 
the following initial conditions: 
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Rx and Ry are the radii of curvature of the cathode 
surface in the horizontal (xz) and vertical (yz) direc-
tions. 

Arbitrary constants ax, ay, bx and by for solutions 
(20) are determined from the analysis of equations (16), 
(17), (27) - (30) and initial conditions (3) - (6) 
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Substituting (31) and (32) in (20) and (12) - (14), 
we obtain several equations characterizing the set of ab-
erration coefficients inherent in the studied electron 
lens. By varying the focusing field parameters, specific 
lenses can be selected to correct a range of aberrations. 
In practice, the sextupole components of focusing fields 
can be used quite successfully for a noticeable decrease 
in chromatic aberrations of the second order of small-
ness. 

(11), (22) and (23) are the equations of trajectories 
in parametric form for the lens under study. Mathemat-
ical expressions and formulas for the analysis of the 
paraxial properties and aberration characteristics of the 
investigated element are determined by solution (12) - 
(14) by the method of successive approximations con-
sidering the above initial conditions.  

When calculating the spatial and time-of-flight pa-
rameters of the lens, the transition to an explicit de-
pendence on the coordinate of the main optical axis is 
performed considering (11). Solving equation (11) by 
the method of successive approximations, we express 

onz  through the coordinate of the main optical axis 

       zzzzzzon 1

'

121    .  (33) 

Substituting (33) into equations (22), we find the 
equations of the trajectories of charged particles in an 
explicit dependence on the coordinate z  
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Equations (34) and (35) characterize the spatial fo-
cusing of charged particles in the lens under study. 

Time-of-flight focusing in the lenses under con-
sideration is described by the equation 
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Specific expressions for determining the entire set 
of aberration coefficients are rather cumbersome and 
are not presented here. 

We note that the general expressions obtained in 
this work can be used to carry out detailed studies of 
the focusing properties of specific electro-optical ele-
ments and to find the most effective designs of charged 
particle sources with correction for second and third or-
der aberrations. 
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